300 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Haskell
		
	
	
	
	
	
			
		
		
	
	
			300 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Haskell
		
	
	
	
	
	
{-# LANGUAGE StandaloneDeriving #-}
 | 
						|
{-|
 | 
						|
An 'Amount' is some quantity of money, shares, or anything else.
 | 
						|
 | 
						|
A simple amount is a 'Commodity', quantity pair:
 | 
						|
 | 
						|
@
 | 
						|
  $1 
 | 
						|
  £-50
 | 
						|
  EUR 3.44 
 | 
						|
  GOOG 500
 | 
						|
  1.5h
 | 
						|
  90 apples
 | 
						|
  0 
 | 
						|
@
 | 
						|
 | 
						|
An amount may also have a per-unit price, or conversion rate, in terms
 | 
						|
of some other commodity. If present, this is displayed after \@:
 | 
						|
 | 
						|
@
 | 
						|
  EUR 3 \@ $1.35
 | 
						|
@
 | 
						|
 | 
						|
A 'MixedAmount' is zero or more simple amounts.  Mixed amounts are
 | 
						|
usually normalised so that there is no more than one amount in each
 | 
						|
commodity, and no zero amounts (or, there is just a single zero amount
 | 
						|
and no others.):
 | 
						|
 | 
						|
@
 | 
						|
  $50 + EUR 3
 | 
						|
  16h + $13.55 + AAPL 500 + 6 oranges
 | 
						|
  0
 | 
						|
@
 | 
						|
 | 
						|
We can do limited arithmetic with simple or mixed amounts: either
 | 
						|
price-preserving arithmetic with similarly-priced amounts, or
 | 
						|
price-discarding arithmetic which ignores and discards prices.
 | 
						|
 | 
						|
-}
 | 
						|
 | 
						|
module Ledger.Amount
 | 
						|
where
 | 
						|
import Ledger.Utils
 | 
						|
import Ledger.Types
 | 
						|
import Ledger.Commodity
 | 
						|
 | 
						|
 | 
						|
instance Show Amount where show = showAmount
 | 
						|
instance Show MixedAmount where show = showMixedAmount
 | 
						|
deriving instance Show HistoricalPrice
 | 
						|
 | 
						|
instance Num Amount where
 | 
						|
    abs (Amount c q p) = Amount c (abs q) p
 | 
						|
    signum (Amount c q p) = Amount c (signum q) p
 | 
						|
    fromInteger i = Amount (comm "") (fromInteger i) Nothing
 | 
						|
    (+) = amountop (+)
 | 
						|
    (-) = amountop (-)
 | 
						|
    (*) = amountop (*)
 | 
						|
 | 
						|
instance Ord Amount where
 | 
						|
    compare (Amount ac aq ap) (Amount bc bq bp) = compare (ac,aq,ap) (bc,bq,bp)
 | 
						|
 | 
						|
instance Num MixedAmount where
 | 
						|
    fromInteger i = Mixed [Amount (comm "") (fromInteger i) Nothing]
 | 
						|
    negate (Mixed as) = Mixed $ map negateAmountPreservingPrice as
 | 
						|
    (+) (Mixed as) (Mixed bs) = normaliseMixedAmount $ Mixed $ as ++ bs
 | 
						|
    (*)    = error "programming error, mixed amounts do not support multiplication"
 | 
						|
    abs    = error "programming error, mixed amounts do not support abs"
 | 
						|
    signum = error "programming error, mixed amounts do not support signum"
 | 
						|
 | 
						|
instance Ord MixedAmount where
 | 
						|
    compare (Mixed as) (Mixed bs) = compare as bs
 | 
						|
 | 
						|
negateAmountPreservingPrice a = (-a){price=price a}
 | 
						|
 | 
						|
-- | Apply a binary arithmetic operator to two amounts, converting to the
 | 
						|
-- second one's commodity (and display precision), discarding any price
 | 
						|
-- information. (Using the second commodity is best since sum and other
 | 
						|
-- folds start with a no-commodity amount.)
 | 
						|
amountop :: (Double -> Double -> Double) -> Amount -> Amount -> Amount
 | 
						|
amountop op a@(Amount _ _ _) (Amount bc bq _) = 
 | 
						|
    Amount bc (quantity (convertAmountTo bc a) `op` bq) Nothing
 | 
						|
 | 
						|
-- | Convert an amount to the specified commodity using the appropriate
 | 
						|
-- exchange rate (which is currently always 1).
 | 
						|
convertAmountTo :: Commodity -> Amount -> Amount
 | 
						|
convertAmountTo c2 (Amount c1 q _) = Amount c2 (q * conversionRate c1 c2) Nothing
 | 
						|
 | 
						|
-- | Convert mixed amount to the specified commodity
 | 
						|
convertMixedAmountTo :: Commodity -> MixedAmount -> Amount
 | 
						|
convertMixedAmountTo c2 (Mixed ams) = Amount c2 total Nothing
 | 
						|
    where
 | 
						|
    total = sum . map (quantity . convertAmountTo c2) $ ams
 | 
						|
 | 
						|
-- | Convert an amount to the commodity of its saved price, if any.
 | 
						|
costOfAmount :: Amount -> Amount
 | 
						|
costOfAmount a@(Amount _ _ Nothing) = a
 | 
						|
costOfAmount (Amount _ q (Just price))
 | 
						|
    | isZeroMixedAmount price = nullamt
 | 
						|
    | otherwise = Amount pc (pq*q) Nothing
 | 
						|
    where (Amount pc pq _) = head $ amounts price
 | 
						|
 | 
						|
-- | Get the string representation of an amount, based on its commodity's
 | 
						|
-- display settings.
 | 
						|
showAmount :: Amount -> String
 | 
						|
showAmount (Amount (Commodity {symbol="AUTO"}) _ _) = "" -- can appear in an error message
 | 
						|
showAmount a@(Amount (Commodity {symbol=sym,side=side,spaced=spaced}) _ pri) =
 | 
						|
    case side of
 | 
						|
      L -> printf "%s%s%s%s" sym space quantity price
 | 
						|
      R -> printf "%s%s%s%s" quantity space sym price
 | 
						|
    where 
 | 
						|
      space = if spaced then " " else ""
 | 
						|
      quantity = showAmount' a
 | 
						|
      price = case pri of (Just pamt) -> " @ " ++ showMixedAmount pamt
 | 
						|
                          Nothing -> ""
 | 
						|
 | 
						|
-- XXX refactor
 | 
						|
-- | Get the unambiguous string representation of an amount, for debugging.
 | 
						|
showAmountDebug :: Amount -> String
 | 
						|
showAmountDebug (Amount c q pri) = printf "Amount {commodity = %s, quantity = %s, price = %s}"
 | 
						|
                                   (show c) (show q) (maybe "" showMixedAmountDebug pri)
 | 
						|
 | 
						|
-- | Get the string representation of an amount, without any \@ price.
 | 
						|
showAmountWithoutPrice :: Amount -> String
 | 
						|
showAmountWithoutPrice a = showAmount a{price=Nothing}
 | 
						|
 | 
						|
-- | Get the string representation (of the number part of) of an amount
 | 
						|
showAmount' :: Amount -> String
 | 
						|
showAmount' (Amount (Commodity {comma=comma,precision=p}) q _) = quantity
 | 
						|
  where
 | 
						|
    quantity = commad $ printf ("%."++show p++"f") q
 | 
						|
    commad = if comma then punctuatethousands else id
 | 
						|
 | 
						|
-- | Add thousands-separating commas to a decimal number string
 | 
						|
punctuatethousands :: String -> String
 | 
						|
punctuatethousands s =
 | 
						|
    sign ++ addcommas int ++ frac
 | 
						|
    where 
 | 
						|
      (sign,num) = break isDigit s
 | 
						|
      (int,frac) = break (=='.') num
 | 
						|
      addcommas = reverse . concat . intersperse "," . triples . reverse
 | 
						|
      triples [] = []
 | 
						|
      triples l  = take 3 l : triples (drop 3 l)
 | 
						|
 | 
						|
-- | Does this amount appear to be zero when displayed with its given precision ?
 | 
						|
isZeroAmount :: Amount -> Bool
 | 
						|
isZeroAmount = null . filter (`elem` "123456789") . showAmountWithoutPrice
 | 
						|
 | 
						|
-- | Is this amount "really" zero, regardless of the display precision ?
 | 
						|
-- Since we are using floating point, for now just test to some high precision.
 | 
						|
isReallyZeroAmount :: Amount -> Bool
 | 
						|
isReallyZeroAmount = null . filter (`elem` "123456789") . printf "%.10f" . quantity
 | 
						|
 | 
						|
-- | Access a mixed amount's components.
 | 
						|
amounts :: MixedAmount -> [Amount]
 | 
						|
amounts (Mixed as) = as
 | 
						|
 | 
						|
-- | Does this mixed amount appear to be zero - empty, or
 | 
						|
-- containing only simple amounts which appear to be zero ?
 | 
						|
isZeroMixedAmount :: MixedAmount -> Bool
 | 
						|
isZeroMixedAmount = all isZeroAmount . amounts . normaliseMixedAmount
 | 
						|
 | 
						|
-- | Is this mixed amount "really" zero ? See isReallyZeroAmount.
 | 
						|
isReallyZeroMixedAmount :: MixedAmount -> Bool
 | 
						|
isReallyZeroMixedAmount = all isReallyZeroAmount . amounts . normaliseMixedAmount
 | 
						|
 | 
						|
-- | Is this mixed amount "really" zero, after converting to cost
 | 
						|
-- commodities where possible ?
 | 
						|
isReallyZeroMixedAmountCost :: MixedAmount -> Bool
 | 
						|
isReallyZeroMixedAmountCost = isReallyZeroMixedAmount . costOfMixedAmount
 | 
						|
 | 
						|
-- | MixedAmount derives Eq in Types.hs, but that doesn't know that we
 | 
						|
-- want $0 = EUR0 = 0. Yet we don't want to drag all this code in there.
 | 
						|
-- When zero equality is important, use this, for now; should be used
 | 
						|
-- everywhere.
 | 
						|
mixedAmountEquals :: MixedAmount -> MixedAmount -> Bool
 | 
						|
mixedAmountEquals a b = amounts a' == amounts b' || (isZeroMixedAmount a' && isZeroMixedAmount b')
 | 
						|
    where a' = normaliseMixedAmount a
 | 
						|
          b' = normaliseMixedAmount b
 | 
						|
 | 
						|
-- | Get the string representation of a mixed amount, showing each of
 | 
						|
-- its component amounts. NB a mixed amount can have an empty amounts
 | 
						|
-- list in which case it shows as \"\".
 | 
						|
showMixedAmount :: MixedAmount -> String
 | 
						|
showMixedAmount m = vConcatRightAligned $ map show $ amounts $ normaliseMixedAmount m
 | 
						|
 | 
						|
-- | Get an unambiguous string representation of a mixed amount for debugging.
 | 
						|
showMixedAmountDebug :: MixedAmount -> String
 | 
						|
showMixedAmountDebug m = printf "Mixed [%s]" as
 | 
						|
    where as = intercalate "\n       " $ map showAmountDebug $ amounts $ normaliseMixedAmount m
 | 
						|
 | 
						|
-- | Get the string representation of a mixed amount, but without
 | 
						|
-- any \@ prices.
 | 
						|
showMixedAmountWithoutPrice :: MixedAmount -> String
 | 
						|
showMixedAmountWithoutPrice m = concat $ intersperse "\n" $ map showfixedwidth as
 | 
						|
    where
 | 
						|
      (Mixed as) = normaliseMixedAmountIgnoringPrice m
 | 
						|
      width = maximum $ map (length . show) as
 | 
						|
      showfixedwidth = printf (printf "%%%ds" width) . showAmountWithoutPrice
 | 
						|
 | 
						|
-- | Get the string representation of a mixed amount, and if it
 | 
						|
-- appears to be all zero just show a bare 0, ledger-style.
 | 
						|
showMixedAmountOrZero :: MixedAmount -> String
 | 
						|
showMixedAmountOrZero a
 | 
						|
    | isZeroMixedAmount a = "0"
 | 
						|
    | otherwise = showMixedAmount a
 | 
						|
 | 
						|
-- | Get the string representation of a mixed amount, or a bare 0,
 | 
						|
-- without any \@ prices.
 | 
						|
showMixedAmountOrZeroWithoutPrice :: MixedAmount -> String
 | 
						|
showMixedAmountOrZeroWithoutPrice a
 | 
						|
    | isZeroMixedAmount a = "0"
 | 
						|
    | otherwise = showMixedAmountWithoutPrice a
 | 
						|
 | 
						|
-- | Simplify a mixed amount by combining any component amounts which have
 | 
						|
-- the same commodity and the same price. Also removes zero amounts,
 | 
						|
-- or adds a single zero amount if there are no amounts at all.
 | 
						|
normaliseMixedAmount :: MixedAmount -> MixedAmount
 | 
						|
normaliseMixedAmount (Mixed as) = Mixed as''
 | 
						|
    where 
 | 
						|
      as'' = map sumSamePricedAmountsPreservingPrice $ group $ sort as'
 | 
						|
      sort = sortBy cmpsymbolandprice
 | 
						|
      cmpsymbolandprice a1 a2 = compare (sym a1,price a1) (sym a2,price a2)
 | 
						|
      group = groupBy samesymbolandprice 
 | 
						|
      samesymbolandprice a1 a2 = (sym a1 == sym a2) && (price a1 == price a2)
 | 
						|
      sym = symbol . commodity
 | 
						|
      as' | null nonzeros = [head $ zeros ++ [nullamt]]
 | 
						|
          | otherwise = nonzeros
 | 
						|
      (zeros,nonzeros) = partition isReallyZeroAmount as
 | 
						|
 | 
						|
sumSamePricedAmountsPreservingPrice [] = nullamt
 | 
						|
sumSamePricedAmountsPreservingPrice as = (sum as){price=price $ head as}
 | 
						|
 | 
						|
-- | Simplify a mixed amount by combining any component amounts which have
 | 
						|
-- the same commodity, ignoring and discarding their unit prices if any.
 | 
						|
-- Also removes zero amounts, or adds a single zero amount if there are no
 | 
						|
-- amounts at all.
 | 
						|
normaliseMixedAmountIgnoringPrice :: MixedAmount -> MixedAmount
 | 
						|
normaliseMixedAmountIgnoringPrice (Mixed as) = Mixed as''
 | 
						|
    where
 | 
						|
      as'' = map sumAmountsDiscardingPrice $ group $ sort as'
 | 
						|
      group = groupBy samesymbol where samesymbol a1 a2 = sym a1 == sym a2
 | 
						|
      sort = sortBy (comparing sym)
 | 
						|
      sym = symbol . commodity
 | 
						|
      as' | null nonzeros = [head $ zeros ++ [nullamt]]
 | 
						|
          | otherwise = nonzeros
 | 
						|
          where (zeros,nonzeros) = partition isZeroAmount as
 | 
						|
 | 
						|
sumAmountsDiscardingPrice [] = nullamt
 | 
						|
sumAmountsDiscardingPrice as = (sum as){price=Nothing}
 | 
						|
 | 
						|
-- | Convert a mixed amount's component amounts to the commodity of their
 | 
						|
-- saved price, if any.
 | 
						|
costOfMixedAmount :: MixedAmount -> MixedAmount
 | 
						|
costOfMixedAmount (Mixed as) = Mixed $ map costOfAmount as
 | 
						|
 | 
						|
-- | The empty simple amount.
 | 
						|
nullamt :: Amount
 | 
						|
nullamt = Amount unknown 0 Nothing
 | 
						|
 | 
						|
-- | The empty mixed amount.
 | 
						|
nullmixedamt :: MixedAmount
 | 
						|
nullmixedamt = Mixed []
 | 
						|
 | 
						|
-- | A temporary value for parsed transactions which had no amount specified.
 | 
						|
missingamt :: MixedAmount
 | 
						|
missingamt = Mixed [Amount Commodity {symbol="AUTO",side=L,spaced=False,comma=False,precision=0} 0 Nothing]
 | 
						|
 | 
						|
 | 
						|
tests_Amount = TestList [
 | 
						|
 | 
						|
   "showMixedAmount" ~: do
 | 
						|
     showMixedAmount (Mixed []) ~?= "0"
 | 
						|
 | 
						|
  ,"amount arithmetic" ~: do
 | 
						|
    let a1 = dollars 1.23
 | 
						|
    let a2 = Amount (comm "$") (-1.23) Nothing
 | 
						|
    let a3 = Amount (comm "$") (-1.23) Nothing
 | 
						|
    (a1 + a2) `is` Amount (comm "$") 0 Nothing
 | 
						|
    (a1 + a3) `is` Amount (comm "$") 0 Nothing
 | 
						|
    (a2 + a3) `is` Amount (comm "$") (-2.46) Nothing
 | 
						|
    (a3 + a3) `is` Amount (comm "$") (-2.46) Nothing
 | 
						|
    sum [a2,a3] `is` Amount (comm "$") (-2.46) Nothing
 | 
						|
    sum [a3,a3] `is` Amount (comm "$") (-2.46) Nothing
 | 
						|
    sum [a1,a2,a3,-a3] `is` Amount (comm "$") 0 Nothing
 | 
						|
    let dollar0 = dollar{precision=0}
 | 
						|
    (sum [Amount dollar 1.25 Nothing, Amount dollar0 (-1) Nothing, Amount dollar (-0.25) Nothing])
 | 
						|
      `is` (Amount dollar 0 Nothing)
 | 
						|
 | 
						|
  ,"mixed amount arithmetic" ~: do
 | 
						|
    let dollar0 = dollar{precision=0}
 | 
						|
    (sum $ map (Mixed . (\a -> [a]))
 | 
						|
             [Amount dollar 1.25 Nothing,
 | 
						|
              Amount dollar0 (-1) Nothing,
 | 
						|
              Amount dollar (-0.25) Nothing])
 | 
						|
      `is` Mixed [Amount dollar 0 Nothing]
 | 
						|
 | 
						|
 | 
						|
  ]
 |